[Computer-go] CNN with 54% prediction on KGS 6d+ data

Hideki Kato hideki_katoh at ybb.ne.jp
Tue Dec 8 10:52:31 PST 2015


As NNs basically learn the frequency of each move, using the value as 
its probability to be chosen in a simulation could be ok.

Hideki

David Ongaro: <6C2FF906-2A00-45C1-B892-2B14BEF35313 at hamburg.de>:
>Did everyone forget the fact that stronger playouts don't necessarily lead to an better 
>evaluation function? (Yes, that what playouts essential are, a dynamic evaluation function.) 
>This is even under the assumption that we can reach the same number of playouts per move.
>
>
>> On 08 Dec 2015, at 10:21, Álvaro Begué <alvaro.begue at gmail.com> wrote:
>> 
>> I don't think the CPU-GPU communication is what's going to kill this idea. The latency in 
>actually computing the feed-forward pass of the CNN is going to be in the order of 0.1 
>seconds (I am guessing here), which means finishing the first playout will take many seconds.
>> 
>> So perhaps it would be interesting to do something like this for correspondence games, but 
>not for regular games.
>> 
>> 
>> Álvaro.
>> 
>> 
>> 
>> On Tue, Dec 8, 2015 at 12:03 PM, Petr Baudis <pasky at ucw.cz <mailto:pasky at ucw.cz>> wrote:
>>   Hi!
>> 
>>   Well, for this to be practical the entire playout would have to be
>> executed on the GPU, with no round-trips to the CPU.  That's what my
>> email was aimed at.
>> 
>> On Tue, Dec 08, 2015 at 04:37:05PM +0000, Josef Moudrik wrote:
>> > Regarding full CNN playouts, I think that problem is that a playout is a
>> > long serial process, given 200-300 moves a game. You need to construct
>> > planes and transfer them to GPU for each move and read result back (at
>> > least with current CNN implementations afaik), so my guess would be that
>> > such playout would take time in order of seconds. So there seems to be a
>> > tradeoff, CNN playouts are (probably much) better (at "playing better
>> > games") than e.g. distribution playouts, but whether this is worth the
>> > implied (probably much) lower height of the MC tree is a question.
>> >
>> > Maybe if you had really a lot of GPUs and very high thinking time, this
>> > could be the way.
>> >
>> > Josef
>> >
>> > On Tue, Dec 8, 2015 at 5:17 PM Petr Baudis <pasky at ucw.cz <mailto:pasky at ucw.cz>> wrote:
>> >
>> > >   Hi!
>> > >
>> > >   In case someone is looking for a starting point to actually implement
>> > > Go rules etc. on GPU, you may find useful:
>> > >
>> > >
>> > > https://www.mail-archive.com/computer-go@computer-go.org/msg12485.html 
><https://www.mail-archive.com/computer-go@computer-go.org/msg12485.html>
>> > >
>> > >   I wonder if you can easily integrate caffe GPU kernels in another GPU
>> > > kernel like this?  But without training, reimplementing the NN could be
>> > > pretty straightforward.
>> > >
>> > > On Tue, Dec 08, 2015 at 04:53:14PM +0100, Michael Markefka wrote:
>> > > > Hello Detlef,
>> > > >
>> > > > I've got a question regarding CNN-based Go engines I couldn't find
>> > > > anything about on this list. As I've been following your posts here, I
>> > > > thought you might be the right person to ask.
>> > > >
>> > > > Have you ever tried using the CNN for complete playouts? I know that
>> > > > CNNs have been tried for move prediction, immediate scoring and move
>> > > > generation to be used in an MC evaluator, but couldn't find anything
>> > > > about CNN-based playouts.
>> > > >
>> > > > It might only be feasible to play out the CNN's first choice move for
>> > > > evaluation purposes, but considering how well the performance of batch
>> > > > sizes scales, especially on GPU-based CNN applications, it might be
>> > > > possible to setup something like 10 candidate moves, 10 reply
>> > > > candidate moves and then have the CNN play out the first choice move
>> > > > for those 100 board positions until the end and then sum up scores
>> > > > again for move evaluation (and/or possibly apply some other tried and
>> > > > tested methods like minimax). Given that the number of 10 moves is
>> > > > supposed to be illustrative rather than representative, other
>> > > > configurations of depth and width in position generation and
>> > > > evaluation would be possible.
>> > > >
>> > > > It feels like CNN can provide a very focused, high-quality width in
>> > > > move generation, but it might also be possible to apply that quality
>> > > > to depth of evaluation.
>> > > >
>> > > > Any thoughts to share?
>> > > >
>> > > >
>> > > > All the best
>> > > >
>> > > > Michael
>> > > >
>> > > > On Tue, Dec 8, 2015 at 4:13 PM, Detlef Schmicker <ds2 at physik.de 
><mailto:ds2 at physik.de>> wrote:
>> > > > > -----BEGIN PGP SIGNED MESSAGE-----
>> > > > > Hash: SHA1
>> > > > >
>> > > > > Hi,
>> > > > >
>> > > > > as somebody ask I will offer my actual CNN for testing.
>> > > > >
>> > > > > It has 54% prediction on KGS 6d+ data (which I thought would be state
>> > > > > of the art when I started training, but it is not anymore:).
>> > > > >
>> > > > > it has:
>> > > > > 1
>> > > > > 2
>> > > > > 3
>> > > > >> 4 libs playing color
>> > > > > 1
>> > > > > 2
>> > > > > 3
>> > > > >> 4 libs opponent color
>> > > > > Empty points
>> > > > > last move
>> > > > > second last move
>> > > > > third last move
>> > > > > forth last move
>> > > > >
>> > > > > input layers, and it is fully convolutional, so with just editing the
>> > > > > golast19.prototxt file you can use it for 13x13 as well, as I did on
>> > > > > last sunday. It was used in November tournament as well.
>> > > > >
>> > > > > You can find it
>> > > > > http://physik.de/CNNlast.tar.gz <http://physik.de/CNNlast.tar.gz>
>> > > > >
>> > > > >
>> > > > >
>> > > > > If you try here some points I like to get discussion:
>> > > > >
>> > > > > - - it seems to me, that the playouts get much more important with such
>> > > > > a strong move prediction. Often the move prediction seems better the
>> > > > > playouts (I use 8000 at the moment against pachi 32000 with about 70%
>> > > > > winrate on 19x19, but with an extremely focused progressive widening
>> > > > > (a=400, a=20 was usual).
>> > > > >
>> > > > > - - live and death becomes worse. My interpretation is, that the strong
>> > > > > CNN does not play moves, which obviously do not help to get a group
>> > > > > life, but would help the playouts to recognize the group is dead.
>> > > > > (http://physik.de/example.sgf <http://physik.de/example.sgf> top black group was 
>with weaker move
>> > > > > prediction read very dead, with good CNN it was 30% alive or so :(
>> > > > >
>> > > > >
>> > > > > OK, hope you try it, as you know our engine oakfoam is open source :)
>> > > > > We just merged all the CNN stuff into the main branch!
>> > > > > https://bitbucket.org/francoisvn/oakfoam/wiki/Home 
><https://bitbucket.org/francoisvn/oakfoam/wiki/Home>
>> > > > > http://oakfoam.com <http://oakfoam.com/>
>> > > > >
>> > > > >
>> > > > > Do the very best with the CNN
>> > > > >
>> > > > > Detlef
>> > > > >
>> > > > >
>> > > > >
>> > > > >
>> > > > > code:
>> > > > > if (col==Go::BLACK) {
>> > > > >           for (int j=0;j<size;j++)
>> > > > >             for (int k=0;k<size;k++)
>> > > > >                   {
>> > > > >         for (int l=0;l<caffe_test_net_input_dim;l++)
>> > > > > data[l*size*size+size*j+k]=0;
>> > > > >         //fprintf(stderr,"%d %d %d\n",i,j,k);
>> > > > >         int pos=Go::Position::xy2pos(j,k,size);
>> > > > >         int libs=0;
>> > > > >         if (board->inGroup(pos))
>> > > > > libs=board->getGroup(pos)->numRealLibs()-1;
>> > > > >         if (libs>3) libs=3;
>> > > > >         if (board->getColor(pos)==Go::BLACK)
>> > > > >                   {
>> > > > >                           data[(0+libs)*size*size + size*j + k]=1.0;
>> > > > >                           //data[size*size+size*j+k]=0.0;
>> > > > >                           }
>> > > > >               else if (board->getColor(pos)==Go::WHITE)
>> > > > >                       {
>> > > > >                           //data[j*size+k]=0.0;
>> > > > >                           data[(4+libs)*size*size + size*j + k]=1.0;
>> > > > >                           }
>> > > > >               else if
>> > > > > (board->getColor(Go::Position::xy2pos(j,k,size))==Go::EMPTY)
>> > > > >               {
>> > > > >                             data[8*size*size + size*j + k]=1.0;
>> > > > >                           }
>> > > > >             }
>> > > > >         }
>> > > > >         if (col==Go::WHITE) {
>> > > > >           for (int j=0;j<size;j++)
>> > > > >             for (int k=0;k<size;k++)
>> > > > >                   {//fprintf(stderr,"%d %d %d\n",i,j,k);
>> > > > >         for (int l=0;l<caffe_test_net_input_dim;l++)
>> > > > > data[l*size*size+size*j+k]=0;
>> > > > >         //fprintf(stderr,"%d %d %d\n",i,j,k);
>> > > > >         int pos=Go::Position::xy2pos(j,k,size);
>> > > > >         int libs=0;
>> > > > >         if (board->inGroup(pos))
>> > > > > libs=board->getGroup(pos)->numRealLibs()-1;
>> > > > >         if (libs>3) libs=3;
>> > > > >         if (board->getColor(pos)==Go::BLACK)
>> > > > >                   {
>> > > > >                           data[(4+libs)*size*size + size*j + k]=1.0;
>> > > > >                           //data[size*size+size*j+k]=0.0;
>> > > > >                           }
>> > > > >               else if (board->getColor(pos)==Go::WHITE)
>> > > > >                       {
>> > > > >                           //data[j*size+k]=0.0;
>> > > > >                           data[(0+libs)*size*size + size*j + k]=1.0;
>> > > > >                           }
>> > > > >               else if (board->getColor(pos)==Go::EMPTY)
>> > > > >               {
>> > > > >                             data[8*size*size + size*j + k]=1.0;
>> > > > >                           }
>> > > > >     }
>> > > > >         }
>> > > > > if (caffe_test_net_input_dim > 9) {
>> > > > >   if (board->getLastMove().isNormal()) {
>> > > > >     int j=Go::Position::pos2x(board->getLastMove().getPosition(),size);
>> > > > >     int k=Go::Position::pos2y(board->getLastMove().getPosition(),size);
>> > > > >     data[9*size*size+size*j+k]=1.0;
>> > > > >   }
>> > > > >   if (board->getSecondLastMove().isNormal()) {
>> > > > >     int
>> > > > > j=Go::Position::pos2x(board->getSecondLastMove().getPosition(),size);
>> > > > >     int
>> > > > > k=Go::Position::pos2y(board->getSecondLastMove().getPosition(),size);
>> > > > >     data[10*size*size+size*j+k]=1.0;
>> > > > >   }
>> > > > >   if (board->getThirdLastMove().isNormal()) {
>> > > > >     int
>> > > > > j=Go::Position::pos2x(board->getThirdLastMove().getPosition(),size);
>> > > > >     int
>> > > > > k=Go::Position::pos2y(board->getThirdLastMove().getPosition(),size);
>> > > > >     data[11*size*size+size*j+k]=1.0;
>> > > > >   }
>> > > > >   if (board->getForthLastMove().isNormal()) {
>> > > > >     int
>> > > > > j=Go::Position::pos2x(board->getForthLastMove().getPosition(),size);
>> > > > >     int
>> > > > > k=Go::Position::pos2y(board->getForthLastMove().getPosition(),size);
>> > > > >     data[12*size*size+size*j+k]=1.0;
>> > > > >   }
>> > > > > }
>> > > > >
>> > > > > -----BEGIN PGP SIGNATURE-----
>> > > > > Version: GnuPG v2.0.22 (GNU/Linux)
>> > > > >
>> > > > > iQIcBAEBAgAGBQJWZvOlAAoJEInWdHg+Znf4t8cP/2a9fE7rVb3Hz9wvdMkvVkFS
>> > > > > 4Y3AomVx8i56jexVyXuzKihfizVRM7x6lBiwjYBhj4Rm9UFWjj2ZvDzBGCm3Sy4I
>> > > > > SpG8D01VnzVR6iC1YTu3ecv9Wo4pTjc7NL5pAxiZDB0V7OTRklfZAYsX4mWyHygn
>> > > > > cr1pIb79/9QfBf/johmuutXJIwYfVG9ShR1+udbxs3aU3QDAbJJ4eTs8oj+NqFpg
>> > > > > JolEEEg3wY693e77SqbUbjxR3kSsysoz9h1nKnR/ZjHByqlwNvSz9ho9eU0rKhaK
>> > > > > GSQ22/c1VPIZhr24FYBbYNYweOzDtonLpuUFCPSnYVels3h/I/LlqV3MeDo6wuZ2
>> > > > > QCPp5+11o4JzvEt7A4zfJCtEOEH0W2/+IjRcIkAVOo65OV/pPsz2EjHehMU6PC6m
>> > > > > vXA/kPx0jqUm1qSb0qCgMq5ZvSqfpcCY7JOlkEwkDBS1fty9sU0hqst3zXR0KGtn
>> > > > > rFuoREmQYi/mkjZfS2Q4AHiZUDbDZUKzRegUA+gR/eKAmJsmWeTDEI9ZAXgxL0cB
>> > > > > p1HGBNDEUKGk+ruq0gIe5vYygyBcJV0BbbBnweDjeZnlG8vLUAVoMF6V/q3gkZb1
>> > > > > P61rfE4d9dohfGBsZ+UWltRyWMj09ieR2G2zCDpIXyxEuoV6CTAlLzDuhmqFa2ma
>> > > > > Fp3lK/uLhOucXwBtStdx
>> > > > > =E47K
>> > > > > -----END PGP SIGNATURE-----
>> > > > > _______________________________________________
>> > > > > Computer-go mailing list
>> > > > > Computer-go at computer-go.org <mailto:Computer-go at computer-go.org>
>> > > > > http://computer-go.org/mailman/listinfo/computer-go 
><http://computer-go.org/mailman/listinfo/computer-go>
>> > > > _______________________________________________
>> > > > Computer-go mailing list
>> > > > Computer-go at computer-go.org <mailto:Computer-go at computer-go.org>
>> > > > http://computer-go.org/mailman/listinfo/computer-go 
><http://computer-go.org/mailman/listinfo/computer-go>
>> > >
>> > > --
>> > >                                 Petr Baudis
>> > >         If you have good ideas, good data and fast computers,
>> > >         you can do almost anything. -- Geoffrey Hinton
>> > > _______________________________________________
>> > > Computer-go mailing list
>> > > Computer-go at computer-go.org <mailto:Computer-go at computer-go.org>
>> > > http://computer-go.org/mailman/listinfo/computer-go 
><http://computer-go.org/mailman/listinfo/computer-go>
>> 
>> > _______________________________________________
>> > Computer-go mailing list
>> > Computer-go at computer-go.org <mailto:Computer-go at computer-go.org>
>> > http://computer-go.org/mailman/listinfo/computer-go 
><http://computer-go.org/mailman/listinfo/computer-go>
>> 
>> 
>> --
>>                                 Petr Baudis
>>         If you have good ideas, good data and fast computers,
>>         you can do almost anything. -- Geoffrey Hinton
>> _______________________________________________
>> Computer-go mailing list
>> Computer-go at computer-go.org <mailto:Computer-go at computer-go.org>
>> http://computer-go.org/mailman/listinfo/computer-go 
><http://computer-go.org/mailman/listinfo/computer-go>
>> _______________________________________________
>> Computer-go mailing list
>> Computer-go at computer-go.org
>> http://computer-go.org/mailman/listinfo/computer-go
>---- inline file
>_______________________________________________

>Computer-go mailing list

>Computer-go at computer-go.org

>http://computer-go.org/mailman/listinfo/computer-go
-- 
Hideki Kato <mailto:hideki_katoh at ybb.ne.jp>



More information about the Computer-go mailing list