[Computer-go] Facebook Go AI
Detlef Schmicker
ds2 at physik.de
Sat Dec 5 05:47:50 PST 2015
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
Hi,
I'd like to start some discussion again.
The Title "Better Computer Go Player with Neural Network and Long-term
Prediction" seems to put the focus on Long-term Prediction, but my
Problem is, that I can not find the result from the paper.
My main problem is: darkforest and darkfores1 differ in two parameters:
Training database and long term prediction
("Our first bot darkforest is trained using standard features, 1 step
prediction on KGS dataset. The second bot darkfores1 is trained using
extended features, 3 step prediction on GoGoD dataset.")
And the importance of the dataset has be found by previous CNN papers.
I understand the idea, that long term prediction might lead to a
different optimum (but it should not lead to one with a higher one
step prediction rate: it might result in a stronger player with the
same prediction rate...), and might increase training speed, but hard
facts would be great before spending a GPU month into this :)
Detlef
Am 23.11.2015 um 09:54 schrieb Rémi Coulom:
> It is darkforest, indeed:
>
> Title: Better Computer Go Player with Neural Network and Long-term
> Prediction
>
> Authors: Yuandong Tian, Yan Zhu
>
> Abstract: Competing with top human players in the ancient game of
> Go has been a long-term goal of artificial intelligence. Go's high
> branching factor makes traditional search techniques ineffective,
> even on leading-edge hardware, and Go's evaluation function could
> change drastically with one stone change. Recent works [Maddison et
> al. (2015); Clark & Storkey (2015)] show that search is not
> strictly necessary for machine Go players. A pure pattern-matching
> approach, based on a Deep Convolutional Neural Network (DCNN) that
> predicts the next move, can perform as well as Monte Carlo Tree
> Search (MCTS)-based open source Go engines such as Pachi [Baudis &
> Gailly (2012)] if its search budget is limited. We extend this idea
> in our bot named darkforest, which relies on a DCNN designed for
> long-term predictions. Darkforest substantially improves the win
> rate for pattern-matching approaches against MCTS-based approaches,
> even with looser search budgets. Against human players, darkforest
> achieves a stable 1d-2d level on KGS Go Server, estimated from free
> games against human players. This substantially improves the
> estimated rankings reported in Clark & Storkey (2015), where
> DCNN-based bots are estimated at 4k-5k level based on performance
> against other machine players. Adding MCTS to darkforest creates a
> much stronger player: with only 1000 rollouts, darkforest+MCTS
> beats pure darkforest 90% of the time; with 5000 rollouts, our best
> model plus MCTS beats Pachi with 10,000 rollouts 95.5% of the
> time.
>
> http://arxiv.org/abs/1511.06410
>
> Rémi
>
> On 11/03/2015 08:32 PM, Nick Wedd wrote:
>> I think this Facebook AI may be the program playing on KGS as
>> darkforest and darkfores1.
>>
>> Nick
>>
>> On 3 November 2015 at 14:28, Petr Baudis <pasky at ucw.cz
>> <mailto:pasky at ucw.cz>> wrote:
>>
>> Hi!
>>
>> Facebook is working on a Go AI too, now:
>>
>> https://www.facebook.com/Engineering/videos/10153621562717200/
>> https://code.facebook.com/posts/1478523512478471
>>
>> http://www.wired.com/2015/11/facebook-is-aiming-its-ai-at-go-the-game-no-computer-can-crack/
>>
>>
>>
>>
The way it's presented triggers my hype alerts, but nevertheless:
>> does anyone know any details about this? Most interestingly,
>> how strong is it?
>>
>> -- Petr Baudis If you have good ideas, good data and fast
>> computers, you can do almost anything. -- Geoffrey Hinton
>> _______________________________________________ Computer-go
>> mailing list Computer-go at computer-go.org
>> <mailto:Computer-go at computer-go.org>
>> http://computer-go.org/mailman/listinfo/computer-go
>>
>>
>>
>>
>> -- Nick Wedd maproom at gmail.com <mailto:maproom at gmail.com>
>>
>>
>> _______________________________________________ Computer-go
>> mailing list Computer-go at computer-go.org
>> http://computer-go.org/mailman/listinfo/computer-go
>
> _______________________________________________ Computer-go mailing
> list Computer-go at computer-go.org
> http://computer-go.org/mailman/listinfo/computer-go
>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAEBAgAGBQJWYusGAAoJEInWdHg+Znf4MNAP/RCKudGHeHunA3VimzH2GNsw
PGn6OiQKZ37SH12E4exouoPSDdtYaCZPYNbxR9sKt1K60LEUYyn6uk38HCM98VOR
Wa/muIMP4IAf0c+5IcA7RTKBBz6GAQaVNDX6zIGF9Os5K9TVrsgv41bAy4K/WJ+V
cFL0ooZW1Gwy1dULwfIelF6JPft+9bC0/Nb2/nrM6nHUcm1ZFGCNkD7kJV1FejbA
tBjzZHjJ5cHPIbPsrFs/ZbQX9SXaiZfrsbf8dE01TqTeYAImXuA1kswXWsNzAJp7
1lAMnl953/iGGG8JmHdxN1owN3Y/KGQvLUcVNhe+0F9GBpjcQ2Hp5M/MuQEkRuko
RwH2kEubVnCBoq1apyXGerBSgB1lATTFIC0613lOyxOaFlurZJl/hVEoGg5b/SEG
mDKz3DCDp3N6Cqtx/2OuDwvNhSlAunXfEfsa5W+XO77VOxk6FvwZNieHxdugltqc
xbogHLp2iVVS7d8jEdoQLwbuXXdPZ+ylQC+oBpUjsT+5h7uWF8MMQgsNXv36Of8M
xqTIf9LtcjB3EjeeHIpsfMdfToMFelsIGiyHZXyVVwpIpibVVhNbawM868I6s5UD
6qFkpf1I3aLD2bB6MrBqsuUF27p4fNjOoabcFEI0YgU6WM3yz46qnzV9n5N3XSCP
G9MP1edplbtkv6rfKZrN
=qdXi
-----END PGP SIGNATURE-----
More information about the Computer-go
mailing list